Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong-Ping Xiao

School of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail:
hp_xiao@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.031$
$w R$ factor $=0.075$
Data-to-parameter ratio $=14.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly $\left[\right.$ [Iaqua(di-2-pyridylamine- $\kappa^{2} N^{2}, N^{2^{\prime}}$)-copper(II)]- μ-thiophene-2,5-dicarboxylato$\left.\kappa^{2} O^{2}: O^{5}\right] N, N$-dimethylformamide monohydrate]

In the title cooordination polymer, $\left\{\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}_{4} \mathrm{~S}\right)\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)\right.\right.$ $\left.\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, the $\mathrm{Cu}^{\mathrm{II}}$ atom is in a squarepyramidal environment defined by an apically coordinated water molecule, carboxyl O atoms from two different thiophene-2,5-dicarboxylate dianions and the two N atoms of a chelating di-2-pyridylamine ligand. The thiophene-2,5dicarboxylate dianion functions as a μ_{2}-bridging ligand to form a zigzag polymeric chain. In addition, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds link the chains into a three-dimensional network structure.

Comment

Like other dicarboxylic acids, such as pyridine-2,6-dicarboxylic acid (Ghosh \& Bharadwaj, 2005; Lu et al., 2005) and benzene-1,4-dicarboxylic acid (Thirumurugan \& Natarajan, 2004; Xiao \& Zhu, 2003), which show diverse coordination modes, thiophene-2,5-dicarboxylic acid $\left(\mathrm{H}_{2} \mathrm{tda}\right)$ is also a versatile ligand and can function variously as a monodentate, bidentate or tridentate ligand; it can also bridge or chelate (Chen et al., 1998, 1999; Sun et al., 2003). In the title complex, $\left\{\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{SO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, (I), the tda dianion functions as a bridge between adjacent $\mathrm{Cu}^{\mathrm{II}}$ centres.

(I)

The $\mathrm{Cu}^{\text {II }}$ atom is in a square-pyramidal environment defined by an apically coordinated water molecule, two carboxylate O atoms from two different thiophene-2,5dicarboxylate dianions and the two N atoms of the chelating 2,2'-dipyridylamine (dpa) ligand (Fig. 1). The basal plane [O1/ $\mathrm{O} 4^{\mathrm{i}} / \mathrm{N} 1 / \mathrm{N} 3$; symmetry code: (i) $\left.-x,-y+1, z+\frac{1}{2}\right]$, with a mean deviation of 0.013 (1) \AA, comprises the two N atoms of dpa and carboxylate O atoms from two different tda dianions. The $\mathrm{Cu} 1-\mathrm{O} 5$ apical distance is significantly longer than those in the basal plane $\left(\mathrm{Cu} 1-\mathrm{O} 1\right.$ and $\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{i}}$; Table 1$)$. The thio-phene-2,5-dicarboxylate dianions function as μ_{2}-bridging

Received 31 October 2005 Accepted 7 November 2005 Online 16 November 2005

Figure 1
The coordination environment of Cu in (I), with the atom numbering, showing displacement ellipsoids at the 30% probability level. [Symmetry code (i) $-x, 1-y, z+\frac{1}{2}$]. The intramolecular $\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O} 2$ hydrogen bond is shown as a dashed line.
ligands forming an undulating zigzag chain with the $2,2^{\prime}$ dipyridylamine molecules protruding alternately from the upper and lower surfaces of the chain (Fig. 2).

The stability of the solid-state structure of (I) is enhanced significantly by hydrogen-bonding interactions (Table 2). An intramolecular hydrogen bond forms between the O5 atom of the coordinated water and the uncoordinated carboxylate O 2 atom [O5-H2B $\cdots \mathrm{O} 2$]. Additional $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 3$ and $\mathrm{O} 5-$ $\mathrm{H} 5 A \cdots \mathrm{O} 3$ intermolecular hydrogen bonds link neighbouring zigzag chains into a three-dimensional network structure and form large voids. These are filled by dimethylformamide and water solvent molecules, which in turn are linked by O7$\mathrm{H} 7 A \cdots \mathrm{O} 6$ and $\mathrm{O} 7-\mathrm{H} 7 B \cdots \mathrm{O} 6$ hydrogen bonds (Fig. 3).

Experimental

An aqueous solution $(10 \mathrm{ml})$ of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.30 \mathrm{mmol}, 0.072 \mathrm{~g})$ was added slowly to a solution (10 ml) of N, N-dimethylformamide containing $2,2^{\prime}$-dipyridylamine ($0.30 \mathrm{mmol}, 0.051 \mathrm{~g}$) and thiophene2,5 -dicarboxylic acid ($0.30 \mathrm{mmol}, 0.052 \mathrm{~g}$). Blue crystals suitable for X-ray analysis were obtained on allowing the solution to stand at room temperature for about a month.

Crystal data

$\left[\begin{array}{l}{\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}_{4} \mathrm{~S}\right)\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)-\right.} \\ \left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO} \cdot \mathrm{H}_{2} \mathrm{O}\end{array}\right.$
$M_{r}=514.01$
Orthorhombic, Pna $_{1}$
$a=7.067(1) \AA$
$b=24.123(2) \AA$
$c=13.379(1) \AA$
$V=2280.8(4) \AA$
$Z=4$
$D_{x}=1.497 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6159 reflections
$\theta=2.9-25.7^{\circ}$
$\mu=1.10 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, blue
$0.46 \times 0.41 \times 0.17 \mathrm{~mm}$

The polymeric zigzag chain structure of (I).

Figure 3
The crystal packing of (I), showing the three-dimensional network structure formed by hydrogen-bonding interactions (shown as dashed lines).

Data collection

Bruker SMART APEX areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.633, T_{\text {max }}=0.836$
13430 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.075$
$S=1.04$
4485 reflections
306 parameters
H atoms treated by a mixture of independent and constrained refinement

4485 independent reflections 4174 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-9 \rightarrow 9$
$k=-30 \rightarrow 28$
$l=-17 \rightarrow 12$

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0436 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.28 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), 5538 Friedel pairs
Flack parameter: 0.012 (11)

Table 1
Selected geometric parameters $\left({ }^{\AA},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{i}}$	$1.958(2)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.002(2)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.963(2)$	$\mathrm{Cu} 1-\mathrm{O} 5$	$2.220(2)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$1.996(2)$		
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 1$	$87.90(8)$	$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 5$	$94.65(10)$
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 3$	$172.76(8)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 5$	$94.73(8)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$91.30(8)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{O} 5$	$92.59(10)$
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$	$90.23(9)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 5$	$97.37(9)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$167.87(8)$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cu} 1$	$128.24(18)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 1$	$89.05(9)$		
Symmetry code: $(\mathrm{i})-x,-y+1, z+\frac{1}{2}$.			

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O} 2$	0.84 (1)	1.99 (3)	2.671 (3)	138 (4)
$\mathrm{O} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O}^{\text {ii }}$	0.85 (1)	2.05 (2)	2.879 (5)	168 (4)
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 6^{\text {iii }}$	0.85 (1)	2.02 (1)	2.861 (5)	170 (5)
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\text {iv }}$	0.86	2.24	2.910 (3)	134
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O}^{\text {v }}$	0.84 (1)	1.98 (2)	2.773 (3)	158 (4)

Symmetry codes: (ii) $x+1, y, z$; (iii) $x+\frac{1}{2},-y+\frac{1}{2}, z$; (iv) $-x+\frac{1}{2}, y-\frac{1}{2}, z+\frac{1}{2}$; (v) $-x+1,-y+1, z+\frac{1}{2}$.

H atoms of the water molecules were located in a difference map and were refined isotropically, with O-H distances restrained to 0.85 (1) Å. All H atoms of the DMF molecules were placed in calculated positions using a riding-model approximation, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ for $\mathrm{OC}-\mathrm{H}$ and $0.96 \AA$ for methyl H atoms
[$U_{\text {iso }}(\mathrm{H})$ values of $1.2(\mathrm{CH})$ or $1.5\left(\mathrm{CH}_{3}\right)$ times $U_{\text {eq }}($ parent atom $)$]. The remaining H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$) and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})$ values equal to $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

We acknowledge financial support from Zhejiang Provincial Natural Science Foundation (grant No. Y404294) and the '551' Distinguished Person Foundation of Wenzhou.

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, B. L., Mok, K. F., Ng, S. C. \& Drew, M. G. B. (1999). Polyhedron, 18, 1211-1220.
Chen, B. L., Mok, K. F., Ng, S. C., Feng, Y. L. \& Liu, S. X. (1998). Polyhedron, 17, 4237-4247.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Ghosh, S. K. \& Bharadwaj, P. K. (2005). Inorg. Chem. 44, 3156-3161.
Lu, J., Shen, E., Li, Y., Xiao, H., Wang, E. \& Xu, L. (2005). Cryst. Growth Des. 5, 65-67.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sun, X. Z., Sun, Y. F., Ye, B. H. \& Chen, X. M. (2003). Inorg. Chem. Commun. 6, 1412-1414.
Thirumurugan, T. \& Natarajan, S. (2004). Inorg. Chem. Commun. 7, 395-399. Xiao, H. P. \& Zhu, L. G. (2003). Chin. J. Inorg. Chem. 19, 1179-1183.

